12 de març de 2017

Quadrats màgics: Durero & Subirachs

En el post Quadrats i altre figures màgiques del nostre blog d'applets vam comentar un applet que tracta de deteminar totes les quaternes diferents que donen 34 sobre el quadrat màgic que va representar A. Durero en el seu gravat "Melencolia I"
Més solucions aquí

Però com que el de Durero no és l'únic quadrat màgic que apareix relacionat a l'art vam proposar als alumnes recrear la feina de l'applet esmentat abans sobre la base del quadrat màgic que Subirachs ha incorporat a la Façana de la Passió de la Sagrada Família


Val a dir que a diferència del quadrat màgic de Durero, el de Subirachs repeteix dos nombres el 10 i el 14 però no fa servir el 12 ni el 14 (això fa que la suma constant de files columnes i diagonals sigui 33 i no 34)

El mateix Subirachs va dissenyar un post destacant 33 quaternes que sumen 33, en ell afirma que hi ha "310 combinacions que sumen sempre els anys de Jesús (33) en el criptograma de la façana de la Passió". Ho podem veure en aquesta imatge de Esquemat
Vam proposar la feina a alumnes de 6è de primària de @escolasadako


La Guimar de l'escola Univers de Barcelona va compartir la feina dels seus alumnes de 4t!!





Quan Subirachs esmenta l'existència de 310 combinacions de suma 33 no està parlant de quaternes, sinó de qualsevol subconjunt de cel·les del seu quadrat màgic que sumen 33. Les quaternes que s'hi poden trobar són només 88 tal com es veu en aquest applet fet amb Geogebra per @jfontgon

Però també s'hi poden trobar:
  • 17 ternes que sumen 33


  • 131 quíntuples (via @jfontgon)
  • 66 sèxtuples (via @jfontgon)
  • i 8 sèptules (via @pirusedano):


El @pirusedano ens ha comentat que el seu raonament per assegurar l'exhaustivitat no va ser diferenciant quantitat de cel·les sinó diferenciant la quantitat de 10's i 14's que hi intevenien. Aquí podeu veure les 310 combinacions classificades segons aquest criteri.

Al MMACA hi ha un mural on s'explica una relació entre els dos quadrats màgics que donen títol al nostre post "Una connexió de cinc segles a la façana de la Sagrada Família" però no volem acabar sense esmentar un tercer quadrat màgic, que fins al moment no sabem que estigui relacionat amb els anteriors.

Al video Ars qubica de Cristobal Vila n'apareix un de constant 192 “Cuadrado Mágico Zaragoza 2015” creat pel Luis Rández de la Universidad de Zaragoza sobre el que els alumnes també poden jugar a trobar quaternes de suma constant.


Altres comentaris:
  • El @Joan_Urgelles ens va comentar que sumant els nombres repetits en el quadrat: dos 14's i dos 10's, ens dona 48, que és el valor numèric de la paraula INRI en llatí (Iesus Natzarenus Rex Iudeorum) Quan es fa el càlcul hem de recordar que a l'alfabet llatí no hi ha la "J" (I=9, N=13, R=17) : 9+13+17+9=48
  • Al quadrat màgic de Durero es poden verificar les següents particularitats numèriques
    • Tota parella de nombres simètrics respecte al centre del quadrat sumen 17
    • La suma dels quadrats dels nombres de la primera fila és igual a la suma dels quadrats dels nombres de la quarta fila: 256+9+4+169 = 438 = 16+225+196+1
    • La suma dels quadrats dels nombres de la segona fila és igual a la suma dels quadrats dels nombres de la tercera fila: 25+100+121+64 = 310 = 81+36+49+144
    • La suma dels quadrats dels nombres de la primera columna també és igual a la suma dels quadrats dels nombres de la quarta columna. La suma dels quadrats dels nombres de la segona columna és igual a la suma dels quadrats dels nombres de la tercera columna.
    • La suma dels quadrats dels nombres de les diagonals és igual a la suma dels quadrats dels nombres que no són a les diagonals i també és igual a la suma dels quadrats dels nombres de la segona i quarta fila i a la suma dels quadrats dels nombres de la primera i tercera fila
  • Al blog del PuntMat hi ha altres dues entrades que parlen de quadrats màgic Quadrats màgics amb retenció de líquid i Quadrat màgics i nombres enters

Cap comentari:

Publica un comentari a l'entrada