31 de desembre de 2018

Nombres irracionals i materials manipulatius

Òbviament els materials manipulatius tenen un lloc a les aules de l'ESO, també a les de 3r i 4t. les tasques que presentem en aquest post tenen com a finalitat il·lustrar aquesta possibilitat.

Tangrams
Si considerem que el costat del quadrat mesura 1, podem classificar els costats de les set peces segons tinguin longituds enteres o racionals
I a partir d'aquí podem fer-nos preguntes del tipus: 
  • quin són els polígons formats per peces del Tangram que tenen tots els seus constats enters?
    • hi ha uns quants quadrilàters 
Rectangles de perímetre 4, 6, 8, 10 i 12
    • però també altres polígons amb una quantitat parell de costats (a la imatge següent veiem una mostra d'hexàgons, octàgons i decàgons) 
  • i tots els seus costats irracionals?
Hi són tots?

Font: capítol 4 del llibre Time Travel and Other Mathematical Bewilderments del Martin Gardner.

Val a observar que si considerem que la mida dels costats del quadrat gran és 1, val la classificació feta simplement variant el fet que ara el vermell indica "irracional" i el blau "racional".

Pattern Blocks 
Tal com ja vam comentar en el post Pattern Blocks del blog d'Applets del Puntmat, les sis peces diferents que hi ha en aquest material es poden classificar en dos grups:
  • D'una banda el triangle, el trapezi vermell (que equival a tres triangles), el rombe blau (que equival a dos triangles) i l'hexàgon (que equival a sis triangles) i 
  • D'altra banda, el quadrat i el rombe de color molt clar, que no podem posar en correspondència amb el triangle com les peces de l'altre grup però sí que podem relacionar entre elles (tal com es veu en la imatge, un quadrat equival a 2 rombes clars)
https://apps.mathlearningcenter.org/pattern-shapes/
Aquesta classificació no és arbitrària. Si considerem que els costats de les sis peces sempre mesuren 1 unitat, les àrees del quadrat i el rombe de color clar són nombres racionals (respectivament 1 i 1:2) però les àrees del triangle, trapezi vermell, rombe blau i hexàgon són nombres irracionals (respectivament: √3:4, 3√3:4, √3:2 i 3√3:2).

Aquestes relacions ens permeten deduir que l’àrea del dodecàgon de costat 1 és 6+3√3 (12 triangles verds i 12 rombes de color clar) i la imatge següent ens permet observar que aquest valor coincideix amb l'àrea de 3 quadrats que tenen per costat el radi del dodecàgon. Aquest radi coincideix amb la mida de la diagonal major de la peça clara: √(2+√3)

Teniu molta més informació sobre aquest material manipulatiu a la presentació de M. Àngels Portilla i Dani Ruiz al C2EM 2016: Pattern Blocks: tot un ventall de possibilitats a l'aula

Puig Blocs
El Pere Puig Adam al capítol “Iniciación al cálculo con irracionales cuadráticos” del seu llibre “Didáctica Matemática Eurística” (1956) parla de les peces d'un joc anomenat ROMBO que els amics del Grup Cúbic ens han donat a conèixer com a #puigblocs (peces amb forma de triangle rectangle isòsceles i rombe, angles interiors 45º, 45º i 90º i 45º, 135º, 45º i 135º, perímetres 2+√2 i 4, àrees 1/2 i √2/2 respectivament)

Font: www.todocoleccion.net
La gent del Creamat les va construir amb la seva impressora 3D i així van formar un mosaic amb el qual el Puig Adam va mostrar que (4+2√2)² = 24+16√2 (48 peces triangulars i 32 rombes, la totalitat de peces que conté cada capsa)


Aquesta idea permet visualitzar diferents productes de nombres irracionals. O com diu l'Anton Aubanell en Materials per a construir mosaics... i matemàtiques! (NouBiaix, 36): "la geometria i els nombres tenen aquí una esplèndida trobada!"

Per exemple: (1+√2)(2+√2) = 4+3√2
O (4+√2)² = 18+8√2 com es veu en aquesta imatge promocional d'un altre joc: 
Amb aquestes també peces es poden construir octàgons regulars i deduir que l'àrea de l'octàgon de costat 1 és 2+2√2.

Teniu molta més informació sobre aquest material manipulatiu i la seva relació amb els Pattern Blocks a la presentació del Grup Cúbic a la seva primera jornada anual: Mostra de l’activitat del mosaic de Puig Adam i generalització a Pattern Blocks

Geoplans 
Les tasques relacionades amb irracionals i els geoplans de trama quadrada són moltes
  • podem donar sentit visual a igualtats del tipus √2 + √2 = √8
Aprender a enseñar matemáticas en la educación secundaria obligatoria
(Calvo, Deulofeu, Jareño & Morera, 2016)
  • podem preguntar-nos quines longituds es poden representar sobre un geoplà
    • la resposta depèn de la mida del geoplà (per exemple en un geoplà de 3x3 com el que apareix en la tasca anterior, les longituds representables són 1, 2, √2, √5 i √8)
    • en un geoplà "infinit" les longituds representables són els múltiples d'1, √2, √5, √8, √10, √13, √17, √18 ... √x quan x és la suma de dos nombres quadrats
  • sabem pel Teorema de Pick que l'àrea de tot polígon que es pugui representar en aquests geoplans és un nombre racional (més precisament, un enter o un enter més 1/2) i aquest fet ens permet deduir que en aquests geoplans no es poden construir 
    • triangles equilàters 
      • imaginem per un moment que fos possible fer un d'aquests triangles de costat r. L'àrea d'un triangle equilàter de costat r és √3/4·r². Sabem que r només pot ser múltiple de √x sent x la suma de dos nombres quadrats. Per tant, r² seria un nombre enter i √3/4·r² seria un nombre irracional. Ja hem dit que totes les àrees de triangles representats en aquests geoplans són racionals, per tant, era impossible la suposició feta
    • octàgons regulars
      • ja hem vist que l'àrea de l'octàgon de costat 1 és 2(1+√2), o sigui, que l'àrea de l'octàgon de costat r és 2r²(1+√2), sempre irracional i per tant impossible en un geoplà de trama quadrada
    • dodecàgons regulars
      • també impossible atenent al fet que, com hem vist més a dalt, l’àrea del dodecàgon de costat r és 3r²(2+√3).
Triangles no equilàters (un d'ells ni tan sols és isòsceles)

9 de desembre de 2018

Pràctica productiva: restes (4)

A partir de que els alumnes sàpiguen fer restes en el rang 0-100 els podem presentar aquesta tasca, inspirada en "Monty the Python" una tasca publicada per l'ATM a "Rich Task Maths 1" (2011): "Hem dibuixat cinc serps sobre la graella del 100. La longitud d'una serp es calcula comptant quantes cel·les ocupa i el seu pes, fent la diferència entre els nombres que estan al cap i a la cua de cada serp. Les cinc serps dibuixades tenen longitud 7 però, quant pesa cadascuna?" 



Encara que no és imprescindible diferenciar els dos extrems, per simplificar la comunicació direm que el cap és, dels dos extrems, el que conté el menor nombre i el cap, l'altre.

No hi ha misteri en el càlcul del pes de les serps rosa, taronja, verda o groga. El problema es presenta al moment de calcular el pes de la serp blava: el cap és el 18, però quina és la cua? el 29? el 38? el 40?. Els tres nombres poden ser la cua!! i aquí tenim la primera oportunitat per plantejar un repte als alumnes: trobar totes les serps que s'amaguen en aquesta imatge blava i els seus pesos.
Tres serps de formes diferents però amb la mateixa "silueta"
Atenent a aquesta distinció entre forma i silueta podem demanar maneres de representar una serp perquè no quedi dubte de com és la seva forma ni on està ubicada. Per exemple, la primera de les tres serps de l'última imatge podria representar-se així: 18, 28, 38, 39, 40, 30, 29.

Però hi ha moltes més preguntes amb les que podem enriquir aquesta activitat: 
  • Pensant en serps de longitud 7 podem preguntar-nos: quant pesen les serps més pesants? quina forma tenen? Però és molt més interessant pensar en les serps més lleugeres... Totes les serps de pes 60 tenen la mateixa forma (la de la serp rosa de la imatge inicial) però les serps de pes 2 poden tenir formes molt diferents. A continuació aprofitem un applet de math_bot per ensenyar serps de longitud 7 i pes 2 però amb diferents siluetes: 

  • Com canvia el rang de pes de les serps en funció de la seva longitud? Aquesta taula fa intuir interessants patrons i provoca fer-se noves preguntes (què més podem demanar a una taula?)

  •  Si 26 és el cap d'una serp de longitud 5, on pot estar la seva cua?
Observar que el fet d'haver fixat que el cap és l'extrem amb
menor valor evita que les solucions d'aquesta pregunta
incloguin als nombres 24, 22, 19, 17, 15, 13, 8, 6 i 4  
  • Quins són tots els pesos possibles per a les serps de longitud 6? Sabem que el pes mínim és 1 i el màxim és 50 però quins valors entre 1 i 50 són efectivament pesos de serps de longitud 6?
Podem començar pensant on pot estar la cua d'una serp de longitud 6, que tingui el cap, per exemple al 5 i a partir d'allí pesar les serps per ariibar a que els pesos possibles són 1, 3, 5, 6, 8, 10, 12, 14, 17, 19, 21, 23, 28, 30, 32, 39, 41 i 50!! 

Observar que aquí no perdem solucions per demanar que el cap tingui un valor
més petit de la cua (perdem serps, per exemple, 5-15-25-24-14-4, però no perdem
pesos possibles ja que ja tenim una serp de pes 1: la que té el cap al 5 i la cua al 6)
Però això només és l'inici. Se'ns obre un ventall enorme de preguntes que encara no ens hem fet: quina és la serp més llarga que no toqui a cap nombre parell? i a cap primer? i a cap quadrat?

Una serp de longitud 19 que no toca cap múltiple de 3

12 de setembre de 2018

Pràctica productiva: equacions de primer grau

Encara que ja havíem fet posts amb tasques que promoguessin la resolució d'equacions de segon grau o la resolució de sistemes de dos equacions de primer grau amb dues incògnites en un ambient de resolució de problemes, encara no havíem proposat tasques semblants per un tipus d'equacions que proposemb amb anterioritat als alumnes: les equacions de primer grau.

Els dos primers exemples s'inspiren en la proposta de @colinfoster77 a "Expression Polygons" i el tercer exemple, en la proposta de @openmiddle "Solving Equations with Variables on Both Sides"

TASCA 1:

a) Escriu sobre cada segment negre la solució de l'equació que resulta d'igualar els dos quadres associats a aquest segment. Què observes?


Als alumnes que no troben dificultats en aquesta primera part de la tasca els podem plantejar preguntes com aquestes:
  • què passa amb les solucions si multipliques per 10 els termes independents de les quatre expressions? 
  • i si els valors multiplicats són els coeficients del terme de primer grau?
  • i si a cadascuna de les expressions li sumes el coeficients del terme de primer grau?

Després d'haver treballat amb aquestes preguntes, o altres de semblants, poden fer front a un repte com el següent:

b) Què expressions escriuries en els quadres per obtenir els sis primers nombres parells? I per obtenir 6 números de dues xifres consecutius?
TASCA 2: 
Tria tres nombres enters diferents i col·loca cadascun al lloc d'una de les estrelles Escriu sobre cada segment negre la solució de l'equació que resulta d'igualar els dos quadres associats a aquest segment. Fes-ho per diferents ternes de nombres inicials. Què observes?


El primer que observen els alumnes és que en ocasions els tres nombres que han d'escriure són el mateix i en la resta d'ocasions els tres nombres són diferents. Aquí, podem guiar-los per concloure que és impossible que en dos segments el valor coincideixi i en el tercer no com a conseqüència de la propietat transitiva de les igualtats. Però no els resulta fàcil veure quina relació tenen els tres nombres entre sí quan són diferents: un d'ells és la mitjana dels altres dos. En aquests casos, creiem que és bona idea suggerir-los que representin els tres nombres sobre una línia numèrica i allí podran observar que un dels tres nombres equidista dels altres dos. 

Quan vam proposar aquesta tasca a alumnes de #eso3sdk van trobar la mateixa dificultat per concloure que una de les solucions és la mitjana de les altres dos però un dels grups a partir de tres casos van arribar a una formulació molt propera:


TASCA 3:

a) Si omplim les cel·les amb nombres naturals diferents entre 1 i 9, quines solucions enteres es poden obtenir? I si no exigim que siguin enteres, quantes solucions diferents es poden obtenir?
b) Omple les cel·les amb nombres naturals diferents entre 1 i 9 perquè la solució sigui el més propera possible a √2

En relació a la primera pregunta del primer apartat, els alumnes hauran de veure que es poden obtenir com a solució qualsevol nombre enter entre -8 i 8 exceptuant el 0. Però si volen comptar totes les solucions diferents que existeixen han d'organitzar molt bé la feina:
  • Una de les solucions és 1 que es pot aconseguir a partir de moltes equacions diferents (per exemple: 5x+7=4x+8) 
  • Hi ha vint solucions més grans que 1: 8, 4, 8/3, 8/5, 2, 4/3, 7, 7/2, 7/3, 7/4, 7/5. 7/6 6, 3, 3/2, 6/5 5, 5/2, 5/3, 5/4, 
    • aquestes fraccions les hem obtingut combinant els nombres1 a 8 per fer de numerador o denominador, però en aquest sentit, val a observar que 8/7 no és una solución possible a pesar de que el numerador i el numerador són números entre 1 i 8 
  • Hi ha vint solucions entre 0 i 1 que són les inverses de les solucions més grans que 1 llistades abans
  • Hi ha 41 solucions negatives que són les oposades de les 41 solucions positives esmentades abans 
  • En total tenim 82 solucions diferents
També es pot preguntar directament, quina és la menor solució positiva que es pot obtenir. Així ho va plantejar l'Ainhoa L. als seus alumnes:
Zona verda "hi ha una única manera d'aconseguir el nombre més gran"
Zona rosa: "hi ha moltes maneres d'aconseguir el nombre més petit"
En relació a l'últim apartat poden veure que encara que cap d'aquestes equacions té un valor irracional com a solució, n'hi ha algunes que tenen solucions properes a √2:
  • 8x+1=2x+9 té solucó 1.333... 
  • 7x+1=5x+4 té solució 1.5
  • o l'òptima: 7x+1=2x+8 que té com a solució 1.4

22 de maig de 2018

Geoplans triangulars i teorema de Pick

Al post Geoplans i pensament exhaustiu ja vam parlar de geoplans de trama quadrada i de trama circular. Fins i tot en el post Joc del geoplà ja apareixia un geoplà de trama isomètrica. Ara reprendrem l'ús d'aquest material per fer alguns comentaris que poden donar lloc a interessants propostes de classe.

Anomenarem geoplà triangular de mida n a un tauler triangular amb n(n+1):2 claus distribuïts de manera que formen n² triangles equilàters iguals

1) Troba tots els triangles diferents que es poden construir en un geoplà triangular de mida 3 i calcula les seves àrees fent servir com a unitat l’àrea d’un triangle bàsic de la trama


2) Troba tots els quadrilàters diferents que es poden construir en un geoplà triangular de mida 3 i calcula les seves àrees
3) Troba tots els triangles diferents que es poden construir en un geoplà triangular de mida 4 i calcula les seves àrees


A partir de les dades anteriors podem buscar adaptar el teorema de Pick, molt conegut per calcular àrees en geoplans estàndard, per a trames isomètriques:

B és la quantitat de punts del geoplà que toquen en perímetre del polígon
I és la quantitat de punts del geoplà que estan a l'interior del polígon

Pot ser ens faria servei analitzar alguns polígons que deixéssin 2 punts del geoplà a l'interior, aquests polígons només es troben en geoplans de mida superior a 4. Aquí hi ha alguns exemples en un geoplà triangular de mida 5:


 
4) Troba tots els triangles equilàters diferents que es poden construir en un geoplà triangular de mida 6 i calcula les seves àrees

Si no considerem com a iguals dos triangles cuando estan col·locats de manera diferent al geoplà la quantitat de solucions seria 70 (veure A000332 i la imatge associada)

Afegides aquestes dades a la taula donen més pes a la conjectura de que l'àrea és 2 unitats més petita que la suma de B + 2 I, o sigui, A = B + 2I - 2 (tenint com a unitat d'àrea el triangle més petit que forma la trama)

  • Hi ha una demostració d’aquest resultat aquí
  • Observar que en geoplaans de trama quadrada  A = (B + 2I- 2) : 2 (tenint com a unitat d'àrea el quadrat més petit que forma la trama)

8 de maig de 2018

Qui és l'intrús?

Una de les taques amb més èxit durant les trobades de formació de mestres són les QUELIs. Els mestres de seguida veuen el seu potencial per fer parlar als alumnes i intueixen com s'engrescaran els alumnes buscant arguments per defensar les seves respostes. O sigui, les QUELIs són tasques ideals per valorar les dimensions "comunicació i represantació" i "raonament i prova".

Què són les QUELIs?
Per explicar què significa QUELIs o WODB i quines característiques tenen aquestes tasques, per comentar com podem portar-les a l'aula i quines variants hi ha creiem que el millor es remitir-vos al resum de la presentació que van fer @davidobrador i @ccbcnmvd al C2EM 2016:



Exemples de QUELI's
Hi ha exemples per a totes les edats i relacionades amb tots els blocs temàtics. A més de la pàgina "oficial" que recull exemples d'aquestes tasques: http://wodb.ca, a Twitter, sota l'etiqueta #wodb els usuaris comparteixen les que dissenyen ells i les que proposen en les seves aules:


Comentarem la nostra experiència amb tres QUELIs de geometria que vam portar a l'aula


Anomenarem A a l'objecte que està a dalt a l'esquerra, B el que està a dalt a la dreta, C el que està a baix a l'esquerra i D a l'últim

Amb aquesta proposta surten arguments relacionats amb

  • els eixos de simetria: B és l'intrús perquè és l'únic que les diagonals són eixos de simetria o C és l'intrús perquè és l'únic que té un únic eix de simetria o D és l'intrús perquè és l'únic que no té cap eix de simetria  
  • les diagonals: A és l'intrús perquè és l'únic que té les diagonals iguals tallant-se al punt mig o  és l'intrús perquè és l'únic que té diagonals perpendiculars o C és l'intrús perquè és l'únic que les diagonals no es tallen al punt mig
  • els costats: C és l'intrús perquè és l'únic que té tres costats de mides diferents o A és l'intrús perquè és l'únic que té costats perpendiculars o B és l'intrús perquè és l'únic que té tots els costats igual
  • els angles: A és l'intrús perquè és l'únic que té tots els angles iguals o C és l'intrús perquè és l'únic que té un angle obtús oposat a un angle agut
  • ... 


Aquí també els arguments han estat variats

  • A és l'intrús perquè és l'únic acutangle, o l'únic que té com a eix de simetria la diagonal del geoplà
  • B és l'intrús perquè és l'únic escalè, o l'únic que té un costat de longitud major que 4
  • C és l'intrús perquè és l'únic rectangle o l'únic que la seva frontera només té contacte amb tres punts del geoplà
  • D és l'intrús perquè és l'únic que no té punts del geoplà a l'nterior, o l'únic que té un costat de longitud 4



En aquest cas, a més de convidar als alumnes a exposar arguments sobre perquè cadascuna de les figures era "l'intrusa" vam plantejar que pensessin què tenien en comú les peces vermelles, les verdes i sobre tot les blaves. El fet de reconeixer que el mateix color indicava mateixa àrea els va donar nous arguments: C és l'intrús perquè és l'únic que té àrea 9 triangles verds o D és l'intrús perquè és l'únic que té àrea 8 triangles verds.

A la fase final del Fem Matemàtiques 2019 l'organització va proposar als participants com a activitat inicial per formar grups puzzles relacionats amb #QUELIs (a cada participant es lliurava amb la inscripció una imatge que corresponia a la cinquena part d'una imatge major que corresponia a una tasca del tipus "qui és l'intrús?" havien de juntar-se amb la resta de participants que tenien imatges de la mateixa QUELI i entre tots argumentar les quatre opcions)


3 de maig de 2018

Freqüència de lletres

Creiem que les llengues són un context pertinent i interessant per fer estadística a l'aula:

Podem estudiar els noms dels alumnes
  • llargària


En aquestes dues fotografies apareixen els alumnes de #eso1sdk (curs 16-17) que també van estudiar els noms dels alumnes d'altres grups de l'escola (cada petit grup d'alumnes de 1r d'ESO va estudiar una classe) donant lloc als següents dos gràfics:
  • lletra inicial

  • lletra final



Respecte a l'anàlisi de la lletra final dels noms trobem molt interessant aquest gràfic


També podem estudiar la freqüència d'aparició de vocals en texts escrits en diferents llengües.

En aquest vídeo gravat durant la sessió dedicada a l'Estadística en el mòdul 2 del curs ARAMAT vam exemplificar com fer aquest estudi:


Aquest vídeo de la col·lecció Videomat també tracta aquest tema:


El @Simon_Gregg va proposar als seus alumnes analitzar la freqüència de totes les lletres basant-se en una proposta de @mburnsmath


El detonant per escriure avui aquest post que fa molt que teníem en ment és aquest interessant fil trobat a Twitter on @eliasmgf, professor de llengua castellana, vol justificar en base a la freqüencia de les lletres la norma ortogràfica: "Las palabras agudas (no monosílabas) se acentúan si terminan en vocal, ene o ese". La base de la seva argumentació és el gràfic de "distribución de las letras dentro de las palabras del español" malgrat que aquí les freqüencies no són absolutes.


Comentari final:
En aquest post estem interessats en "lletres" per això hem esmentat l'estudi de la quantitat de lletres o de les lletres inicials i finals dels noms de persones. Però els noms de persones poden ser un motiu d'estudi per si mateixos. 

En aquest sentit, trobem interessant un article de diario.es sobre noms tradicionals vs moderns on apareixen aquests gràfics: