15 d’octubre del 2015

Construir cases: descomposicions del 10

Les descomposicions del 10 com a suma de dos nombres és un contingut fonamental a finals d'infantil i a primer de primària atès que, conjuntament amb les sumes de dígits juguen un paper importantíssim en els primers càlculs. Però anant més enllà de la mera pràctica d'aquesta destressa i treballant en un ambient de resolució de problemes, podem fer activitats espectaculars, com, per exemple, aquesta: 

Volem fer una maqueta d'un barri, on cada cubet representa una casa (o pis). Tenim 10 cubets i la pregunta és la següent:
Poden començar per  un barri d'una sola torre de 10 cubets i preguntem si a algú se li acut un altre disseny d'aquest barri? Pot passar, amb certa facilitat,  que algun alumne en faci un de dos torres de cinc cubets cadascuna, però no podem admetre aquesta solució ja que no n'hi pot haver dos torres iguals. Ara ja queda clar l'enunciat del problema, a partir d'aqui, a treballar! Algunes respostes podrien ser una de 8 i una de 2, o una de 7, una de 2 i una de 1, etc.
    Diem que és una activitat de pràctica productiva, ja que a més de treballar un objectiu de pràctica n'incorpora un de treball sistemàtic, o de pensament exhaustiu. Han de sorgir preguntes que els guiïn cap a aquests tipus de pensament: ens en falta algun? com ens organitzem per saber que no n'hi ha cap de repetit?

    La idea original està treta de la pàgina MathPickle, concretament d'aquest vídeo fantàstic on ho treballen col·lectivament i "contrarellotge"
      http://youtu.be/ImkJEi2aQ80
      Pel que fa al pensament sistemàtic, i ara ens en aniríem a cicle mitjà, un cop entès el problema i fet manipulativament, per assegurar que no ens en deixarem cap, hem de reflexionar, identificar alguna estratègia, i potser "cridar al món del símbols".

      Discutint  podem arribar a identificar dues estratègies diferents.

      a) Començar per el cas d'una sola torre, després buscar totes les possibilitat que es poden fer amb dues torres, amb tres, etc.


      b) Ordenar numèricament començant per la torre més alta: quantes solucions diferents puc fer amb una torre de 10? (una). I amb una torre de 9? (una). I amb una torre de 8? (una). I amb una torre de 7? (dues: 7+3 o 7+2+1), etc...

      Les imatges anteriors són captures de pantalla del vídeo
      Però encara no hem tancat: Com sabem que hem acabat? No podem fer cap "barri" que tingui cinc grups de cases? Per què?

      Què passaria si tinguessim 12 cubets?

      Pensem que és importantíssim que els mestres de cicle mitjà comencin a treballar aquests aspectes que entren de ple a anar estructurant el pensament matemàtic dels nostres alumnes.

      Un problema anàleg a aquest, en el sentit que requereix suma de dígits i pensament exhaustiu,  apareix explicat al final del post "Triangles aritmètics (1). Descomposició de dígits" en dos formats: "caputxeta vermella" i "repartiendo pastelitos".

      1 comentari:

      1. Hola. Us acabo de conèixer i teniu un blog molt interessant. Prometo visitar-lo amb més freqüència. Felicitats!

        Aprofito per donar-te a conèixes EsferaTIC, una comunitat per a blogs educatius amants de les noves tecnologies. Penso que el teu blog hi encaixa molt!

        És totalment gratuït, només cal compartir un segell. Aquí tens tota la informació. Moltes gràcies!

        Moltes salutacions!

        ResponElimina